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Abstract

In this paper we explore the specific role of randomness in financial markets, inspired by the beneficial
role of noise in many physical systems and in previous applications to complex socio-economic systems.
After a short introduction, we study the performance of some of the most used trading strategies in
predicting the dynamics of financial markets for different international stock exchange indexes, with the
goal of comparing them to the performance of a completely random strategy. In this respect, historical
data for FTSE-UK, FTSE-MIB, DAX, and S&P500 indexes are taken into account for a period of about
15-20 years (since their creation until today).

Introduction

In physics, both at the classical and quantum level, many real systems work fine and more efficiently due
to the useful role of a random weak noise [1–6]. But not only physical systems benefits from disorder. In
fact, noise has a great influences on the dynamics of cells, neurons and other biological entities, but also
on ecological, geophysical and socio-economic systems. Following this line of research, we have recently
investigated how random strategies can help to improve the efficiency of a hierarchical group in order
to face the Peter principle [7–9] or a public institution such as a Parliament [10]. Other groups have
successfully explored similar strategies in minority and Parrondo games [11,12], in portfolio performance
evaluation [13] and in the context of the continuous double auction [14].
Recently Taleb has brilliantly discussed in his successful books [15, 16] how chance and black swans rule
our life, but also economy and financial market behavior beyond our personal and rational expectations or
control. Actually, randomness enters in our everyday life although we hardly recognize it. Therefore, even
without being skeptic as much as Taleb, one could easily claim that we often misunderstand phenomena
around us and are fooled by apparent connections which are only due to fortuity. Economic systems
are unavoidably affected by expectations, both present and past, since agents’ beliefs strongly influence
their future dynamics. If today a very good expectation emerged about the performance of any security,
everyone would try to buy it and this occurrence would imply an increase in its price. Then, tomorrow,
this security would be priced higher than today, and this fact would just be the consequence of the
market expectation itself. This deep dependence on expectations made financial economists try to build
mechanisms to predict future assets prices. The aim of this study is precisely to check whether these
mechanisms, which will be described in detail in the next sections, are more effective in predicting the
market dynamics compared to a completely random strategy.
In a previous article [17], motivated also by some intriguing experiments where a child, a chimpanzee
and darts were successfully used for remunerative investments [18, 19], we already found some evidence
in favor of random strategies for the FTSE-UK stock market. Here we will extend this investigation
to other financial markets and for new trading strategies. The paper is organized as follows. Section
2 presents a brief introduction to the debate about predictability in financial markets. In Section 3 we
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introduce the financial time series considered in our study and perform a detrended analysis in search for
possible correlations of some kind. In Section 4 we define the trading strategies used in our simulations
while, in Section 5, we discuss the main results obtained. Finally, in Section 6, we draw our conclusions,
suggesting also some counterintuitive policy implications.

1 Expectations and Predictability in Financial Markets

As Simon [20] pointed out, individuals assume their decision on the basis of a limited knowledge about
their environment and thus face high search costs to obtain needed information. However, normally, they
cannot gather all information they should. Therefore, agents act on the basis of bounded rationality,
which leads to significant biases in the expected utility maximization that they pursue. In contrast,
Friedman [21] defended the rational agent approach, which considers that the behavior of agents can be
best described assuming their rationality, since non-rational agents do not survive competition on the
market and are driven out of it. Therefore, neither systematic biases in expected utility, nor bounded
rationality can be used to describe agents’ behaviors and their expectations.
Without any fear of contradiction, one could say that nowadays two main reference models of expec-
tations have been widely established within the economics literature: the adaptive expectations model
and the rational expectation model. Here we will not give any formal definition of these paradigms. For
our purposes, it is sufficient to recall their rationale. The adaptive expectations model is founded on
a somehow weighted series of backward-looking values (so that the expected value of a variable is the
result of the combination of its past values). In contrast, the rational expectations model hypothesizes
that all agents have access to all the available information and, therefore, know exactly the model that
describes the economic system (the expected value of a variable is then the objective prediction provided
by theory). These two theories dates back to very relevant contributions, among which we just refer to
Friedman [21, 22], Phelps [23], and Cagan [24] for adaptive expectations (it is however worth to notice
that the notion of “adaptive expectations” has been first introduced by Arrow and Nerlove [25]). For
rational expectations we refer to Muth [26], Lucas [27], and Sargent-Wallace [28].
Financial markets are often taken as example for complex dynamics and dangerous volatility. This some-
how suggests the idea of unpredictability. Nonetheless, due to the relevant role of those markets in the
economic system, a wide body of literature has been developed to obtain some reliable predictions. As
a matter of fact, forecasting is the key point of financial markets. Since Fama [29], we say a market
is efficient if perfect arbitrage occurs. This means that the case of inefficiency implies the existence of
opportunities for unexploited profits and, of course, traders would immediately operate long or short
positions until any further possibility of profit disappears. Jensen [30] states precisely that a market is
to be considered efficient with respect to an information set if it is impossible to make profits by trading
on the basis of that given information set. This is consistent with Malkiel [31], who argues that an
efficient market perfectly reflects all information in determining assets’ prices. As the reader can easily
understand, the more important part of this definition of efficiency relies on the completeness of the
information set. In fact, Fama [29] distinguishes three forms of market efficiency, according to the degree
of completeness of the informative set (namely “weak”, “semi-strong”, and “strong”). Thus, traders and
financial analysts continuously seek to expand their information set to gain the opportunity to choose
the best strategy: this process involves agents so much in price fluctuations that, at the end of the day,
one could say that their activity is reduced to a systematic guess. The complete globalization of financial
markets amplified this process and, eventually, we are experiencing decades of extreme variability and
high volatility.
Keynes argued, many years ago, that rationality of agents and mass psychology (so-called “animal spir-
its”) should not be interpreted as if they were the same thing. The Author introduced the very famous
beauty contest example to explain the logic underneath financial markets. In his General Theory [32] he
wrote that “investment based on genuine long-term expectations is so difficult as to be scarcely practicable.
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He who attempts it must surely lead much more laborious days and run greater risks than he who tries
to guess better than the crowd how the crowd will behave; and, given equal intelligence, he may make
more disastrous mistakes.” In other words, in order to predict the winner of the beauty contest, one
should try to interpret the jury’s preferred beauty, rather than pay attention on the ideal of objective
beauty. In financial markets it is exactly the same thing. It seems impossible to forecast prices of shares
without mistakes. The reason is that no investor can know in advance the opinion “of the jury”, i.e. of
a widespread, heterogeneous and very substantial mass of investors that reduces any possible prediction
to just a guess.
Despite considerations like these, the so-called Efficient Market Hypothesis (whose main theoretical back-
ground is the theory of rational expectations), describes the case of perfectly competitive markets and
perfectly rational agents, endowed with all available information, who choose for the best strategies (since
otherwise the competitive clearing mechanism would put them out of the market). There is evidence that
this interpretation of a fully working perfect arbitrage mechanism is not adequate to analyze financial
markets as, for example: Cutler et al. [33], who shows that large price movements occur even when little
or no new information is available; Engle [34] who reported that price volatility is strongly temporally
correlated; Mandelbrot [35, 36], Lux [37], Mantegna and Stanley [38] who argue that short-time fluctu-
ations of prices are non-normal; or last but not least, Campbell and Shiller [39] who explain that prices
may not accurately reflect rational valuations.
Very interestingly, a plethora of heterogeneous agents models have been introduced in the field of financial
literature. In these models, different groups of traders co-exist, with different expectations, influencing
each other by means of the consequences of their behaviors. Once again, our discussion cannot be exhaus-
tive here, but we can fruitfully mention at least contributions by Brock [40,41], Brock and Hommes [42],
Chiarella [43], Chiarella and He [44], DeGrauwe et al. [45], Frankel and Froot [46], Lux [47], Wang [48],
and Zeeman [49].
Part of this literature refers to the approach, called “adaptive belief systems”, that tries to apply non-
linearity and noise to financial market models. Intrinsic uncertainty about economic fundamentals, along
with errors and heterogeneity, leads to the idea that, apart from the fundamental value (i.e. the present
discounted value of the expected flows of dividends), share prices fluctuate unpredictably because of
phases of either optimism or pessimism according to corresponding phases of uptrend and downtrend
that cause market crises. How could this sort of erratic behavior be managed in order to optimize an
investment strategy? In order to explain the very different attitude adopted by agents to choose strate-
gies when trading on financial markets, a distinction is done between fundamentalists and chartists. The
former ones base their expectations about future assets’ prices upon market fundamentals and economic
factors (i.e. both micro- and macroeconomic variables, such as dividends, earnings, economic growth,
unemployment rates, etc). Conversely, the latter ones try to extrapolate trends or statistically relevant
characteristics from past series of data, in order to predict future paths of assets prices (also known as
technical analysis).
Given that the interaction of these two groups of agents determines the evolution of the market, we
choose here to focus on chartists’ behavior (since a qualitative analysis on macroeconomic fundamentals
is absolutely subjective and difficult to asses), trying to evaluate the individual investor’s ex-ante predic-
tive capacity. Assuming the lack of complete information, randomness plays a key role, since efficiency
is impossible to be reached. This is particularly important in order to underline that our approach does
not rely on any form of the above mentioned Efficient Markets Hypothesis paradigm. More precisely, we
are seeking for the answer to the following question: if a trader assumes the lack of complete information
through all the market (i.e. the unpredictability of stock prices dynamics [50–53]), would an ex-ante
random trading strategy perform, on average, as good as well-known trading strategies? We move from
the evidence that, since each agent relies on a different information set in order to build his/her trading
strategies, no efficient mechanism can be invoked. Instead, a complex network of self-influencing behavior,
due to asymmetric circulation of information, develops its links and generates herd behaviors to follow
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Figure 1. Temporal evolution of four important financial market indexes (over time
intervals going from 3714 to 5750 days). From the top to the bottom, we show the FTSE UK
All-Share index, the FTSE MIB All-Share index, the DAX All-Share index and the S&P 500 index. See
text for further details.

some signals whose credibility is accepted.
Financial crises show that financial markets are not immune to failures. Their periodic success is not
free of charge: catastrophic events burn enormous values in dollars and the economic systems in severe
danger. Are traders so sure that elaborated strategies fit the dynamics of the markets? Our simple
simulation will perform a comparative analysis of the performance of different trading strategies: our
traders will have to predict, day by day, if the market will go up (’bullish’ trend) or down (’bearish’
trend). Tested strategies are: the Momentum, the RSI, the UPD, the MACD, and a completely Random
one.
Rational expectations theorists would immediately bet that the random strategy would loose the com-
petition as it is not making use of any information but, as we will show, our results are quite surprising.
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Figure 2. Detrended analysis for the four financial market series shown in Fig.1. The power
law behavior of the DMA standard deviation allows to derive an Hurst index that, in all the four cases,
oscillates around 0.5, thus indicating an absence of correlations, on average, over large time periods. See
text.

2 Detrended Analysis of the Index Time Series

We consider four very popular indexes of financial markets and in particular, we analyze the following
corresponding time series, shown in Fig. 1:
- FTSE UK All-Share index, from January, 1st 1998 to August, 3rd 2012, for a total of T = 3714
days;
- FTSE MIB All-Share index, from December, 31th 1997 to June, 29th 2012, for a total of T = 3684
days;
- DAX All-Share index, from November, 26th 1990 to August, 09th 2012, for a total of T = 5493 days;
- S&P 500 index, from September, 11th 1989 to June, 29th 2012, for a total of T = 5750 days;

In general, the possibility to predict financial time series has been stimulated by the finding of some
kind of persistent behavior in some of them [38, 54, 55]. The main purpose of the present section is to
investigate the possible presence of correlations in the previous four financial series of European and US
stock market all share indexes. In this connection, we will calculate the time-dependent Hurst exponent
by using the detrended moving average (DMA) technique [56]. Let us begin with a summary of the DMA
algorithm. The computational procedure is based on the calculation of the standard deviation σDMA(n)
along a given time series defined as

σDMA(n) =

√

√

√

√

1

Nmax − n

Nmax
∑

t=n

[y(t)− ỹn(t)]2, (1)

where ỹn(t) = 1
n

∑n−1
k=0 y(t − k) is the average calculated in each time window of size n. In order to

determine the Hurst exponent H , the function σDMA(n) is calculated for increasing values of n inside the
interval [2, Nmax/2], Nmax being the length of the time series, and the obtained values are reported as a
function of n on a log-log plot. In general, σDMA(n) exhibits a power-law dependence with exponent H ,
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Figure 3. Time dependence of the Hurst index for the four series: on smaller time scales,
significant correlations are present. See text.

i.e.
σDMA ∝ nH . (2)

In particular, if 0 ≤ H ≤ 0.5, one has a negative correlation or anti-persistent behavior, while if 0.5 ≤

H ≤ 1 one has a positive correlation or persistent behavior. The case of H = 0.5 corresponds to an
uncorrelated Brownian process. In our case, as a first step, we calculated the Hurst exponent considering
the complete series. This analysis is illustrated in the four plots of Fig. 2. Here, a linear fit to the log-log
plots reveals that all the values of the Hurst index H obtained in this way for the time series studied are,
on average, very close to 0.5. This result seems to indicate an absence of correlations on large time scales
and a consistence with a random process.
On the other hand, it is interesting to calculate the Hurst exponent locally in time. In order to perform
this analysis, we consider subsets of the complete series by means of sliding windows Ws of size Ns, which
move along the series with time step s. This means that, at each time t ∈ [0, Nmax − s], we calculate the
σDMA(n) inside the sliding window Ws by changing Nmax with Ns in Eq.(1). Hence, following the same
procedure described above, a sequence of Hurst exponent values H(t) is obtained as function of time.
In Fig. 3 we show the results obtained for the parameters Ns = 1000, s = 20. In this case, the values
obtained for the Hurst exponent H(t) differ very much locally from 0.5, thus indicating the presence of
significant local correlations.
This investigation, which is in line with what was found previously in Ref. [56] for the Dax index, seems
to suggest that correlations are important only on a local temporal scale, while they cancel out averaging
over long-term periods. As we will see in the next sections, this feature will affect the performances of
the trading strategies considered.

3 Trading strategies description

In the present study we consider five trading strategies defined as follows:
1) Random (RND) Strategy

This strategy is the simplest one, since the correspondent trader makes his/her prediction at time t
completely at random (with uniform distribution).
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Figure 4. RSI divergence example. A divergence is a disagreement between the indicator (RSI)
and the underlying price. By means of trend-lines, the analyst check that slopes of both series agree.
When the divergence occurs, an inversion of the price dynamic is expected. In the example a bullish
period is expected.

2) Momentum (MOM) Strategy
This strategy is based on the so called ’momentum’ M(t) indicator, i.e. the difference between the
value I(t) and the value I(t − τM ), where τM is a given trading interval (in days). Then, if M(t) =
I(t) − I(t − τM ) > 0, the trader predicts an increment of the closing index for the next day (i.e. it
predicts that I(t + 1) − I(t) > 0) and vice-versa. In the following simulations we will consider τM = 7
days, since this is one of the most used time lag for the momentum indicator. See Ref. [57].

3) Relative Strength Index (RSI) Strategy
This strategy is based on a more complex indicator called ’RSI’ . It is considered a measure of the stock’s
recent trading strength and its definition is: RSI(t) = 100−100/[1+RS(t)], where RS(t, τRSI) is the ratio
between the sum of the positive returns and the sum of the negative returns occurred during the last τRSI

days before t. Once calculated the RSI index for all the days included in a given time-window of length
TRSI immediately preceding the time t, the trader which follows the RSI strategy makes his/her prediction
on the basis of a possible reversal of the market trend, revealed by the so called ’divergence’ between
the original time series and the new RSI one. A divergence can be defined referring to a comparison
between the original data series and the generated RSI-series, and it is the most significant trading signal
delivered by any oscillator-style indicator. It is the case when the significant trend between two local
extrema shown by the RSI trend is oriented in the opposite direction to the significant trend between
two extrema (in the same time lag) shown by the original series. When the RSI line slopes differently
from the original series line, a divergence occurs. Look at the example in Fig.4: two local maxima follow
two different trends sloped oppositely. In the case shown, the analyst will interpret this divergence as a
bullish expectation (since the RSI oscillator diverges from the original series: it starts increasing when
the original series is still decreasing). In our simplified model, the presence of such a divergence translates
into a change in the prediction of the I(t + 1) − I(t) sign, depending on the bullish or bearish trend of
the previous TRSI days. In the following simulations we will choose τRSI = TRSI = 14 days, since - again
- this value is one of the mostly used in RSI-based actual trading strategies. See Ref. [57].

4) Up and Down Persistency (UPD) Strategy
This deterministic strategy does not come from technical analysis. However, we decided to consider it
because it seems to follows the apparently simple alternate ”up and down” behavior of market series that
any observer can see at first sight. The strategy is based on the following very simple rule: the prediction
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for tomorrow market’s behavior is just the opposite of what happened the day before. If, e.g., one has
I(t)− I(t− 1) > 0, the expectation at time t for the period t+ 1 will be bullish: I(t+1)− I(t) < 0, and
vice versa.

5) Moving Average Convergence Divergence (MACD) Strategy
The ’MACD’ is a series built by means of the difference between two Exponential Moving Averages (EMA,
henceforth) of the market price, referred to two different time windows, one smaller and one larger. In any
moment t, MACDt = EMA12d

t −EMA26d
t . In particular, the first is the Exponential Moving Average of

I(t) taken over twelve days, whereas the second refers to twenty-six days. The calculation of these EMAs
on a pre-determined time lag, x, given a proportionality weight w = 2

x+1 , is executed by the following

recursive formula: EMAxd
t = EMAxd

t−1 + w[I(t) − EMAxd
t−1] with EMAxd

0 =
∑

t
j=t−x I(j)

x
, where t ≥ x.

Once the MACD series has been calculated, its 9-days Exponential Moving Average is obtained and,
finally, the trading strategy for the market dynamics prediction can be defined: the expectation for the
market is bullish (bearish) if MACD − EMA9d

MACD > 0 (MACD − EMA9d
MACD < 0). See Ref. [57].

4 Results of Empirically Based Simulations

For each one of our four financial time series of length T (in days), the goal was simply to predict, day by
day and for each strategy, the upward (bullish) or downward (bearish) movement of the index I(t+1) at
a given day with respect to the closing value I(t) one day before: if the prediction is correct, the trader
wins, otherwise he/she looses. In this connection we are only interested in evaluating the percentage of
wins achieved by each strategy, assuming that - at every time step - the traders perfectly know the past
history of the indexes but do not possess any other information and can neither exert any influence on
the market, nor receive any information about future moves.
In the following, we test the performance of the five strategies by dividing each of the four time series
into a sequence of Nw trading windows of equal size Tw = T/Nw (in days) and evaluating the average
percentage of wins for each strategy inside each window while the traders move along the series day by
day, from t = 0 to t = T . This procedure, when applied for Nw = 3, 9, 18, 30, allows us to explore the
performance of the various strategies for several time scales (ranging, approximatively, from 6 months to
5 years).

The motivation behind this choice is connected to the fact that the time evolution of each index
clearly alternates between calm and volatile periods, which at a finer resolution would reveal a further,
self-similar, alternation of intermittent and regular behavior over smaller time scales, a characteristic
feature of turbulent financial markets [35, 36, 38, 58]. Such a feature makes any long-term prediction of
their behavior very difficult or even impossible with instruments of standard financial analysis. The point
is that, due to the presence of correlations over small temporal scales (as confirmed by the analysis of
the time dependent Hurst exponent in Fig. 3), one might expect that a given standard trading strategy,
based on the past history of the indexes, could perform better than the others inside a given time window.
But this could depend much more on chance than on the real effectiveness of the adopted algorithm. On
the other hand, if on a very large temporal scale the financial market time evolution is an uncorrelated
Brownian process (as indicated by the average Hurst exponent, which result to be around 0.5 for all the
financial time series considered), one might also expect that the performance of the standard trading
strategies on a large time scale becomes comparable to random ones. In fact, this is exactly what we
found as explained in the following.
In Figs. 5-8, we report the results of our simulations for the four stock indexes considered (FTSE-UK,
FTSE-MIB, DAX, S&P 500). In each figure, from top to bottom, we plot: the market time series I(t)
as a function of time; the correspondent ’returns’ series, determined as the ratio [I(t + 1) − I(t)]/I(t);
the volatility of the returns, i.e. the variance of the previous series, calculated inside each window for 4
increasing values of the trading window size Nw (equal to, from left to right, 3, 9, 18 and 30 respectively);
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Figure 5. Results for the FTSE-UK index series, divided into an increasing number of
trading-windows of equal size (3, 9, 18, 30), simulating different time scales. From top to
bottom, we report the index time series, the corresponding returns time series, the volatility, the
percentages of wins for the five strategies over all the windows and the corresponding standard
deviations. The last two quantities are averaged over 10 different runs (events) inside each window.
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Figure 6. Results for the FTSE-MIB index series, divided into an increasing number of
trading-windows of equal size (3, 9, 18, 30), simulating different time scales. From top to
bottom, we report the index time series, the corresponding returns time series, the volatility, the
percentages of wins for the five strategies over all the windows and the corresponding standard
deviations. The last two quantities are averaged over 10 different runs (events) inside each window.
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Figure 7. Results for the DAX index series, divided into an increasing number of
trading-windows of equal size (3, 9, 18, 30), simulating different time scales. From top to
bottom, we report the index time series, the corresponding returns time series, the volatility, the
percentages of wins for the five strategies over all the windows and the corresponding standard
deviations. The last two quantities are averaged over 10 different runs (events) inside each window.
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Figure 8. Results for the S&P 500 index series, divided into an increasing number of
trading-windows of equal size (3, 9, 18, 30), simulating different time scales. From top to
bottom, we report the index time series, the corresponding returns time series, the volatility, the
percentages of wins for the five strategies over all the windows and the corresponding standard
deviations. The last two quantities are averaged over 10 different runs (events) inside each window.
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Figure 9. The percentage of wins of the different strategies inside each time window -
averaged over 10 different events - is reported, in the case Nw = 30, for the four markets
considered. As visible, the performances of the strategies can be very different one from the others
inside a single time window, but averaging over the whole series these differences tend to disappear and
one recovers the common 50% outcome shown in the previous figures.

the average percentage of wins for the five trading strategies considered, calculated for the same four
kinds of windows (the average is performed over all the windows in each configuration, considering 10
different simulation runs inside each window); the corresponding standard deviations for the wins of the
five strategies.
Observing the last two panels in each figure, two main results are evident:
1. The average percentages of wins for the five strategies are always comparable and oscillate around

50%, with small random differences which depend on the financial index considered. The performance of
50% of wins for all the strategies may seem paradoxical, but it depends on the averaging procedure over
all the windows along each time series. In Fig. 9 we show, for comparison, the behavior of the various
strategies for the four financial indexes considered and for the case Nw = 30 (the score in each window is
averaged over 10 different events): as one can see, within a given trading window each single strategy may
randomly perform much better or worse than 50%, but on average the global performance of the different
strategies is very similar. Moreover, referring again to Figs. 5-8, it is worth to notice that the strategy
with the highest average percentage of wins (for most of the windows configurations) changes from one
index to another one: for FTSE-UK, the MOM strategy seems to have a little advantage; for FTSE-MIB,
the UPD seems to be the best one; for DAX, the RSI, and for the S&P 500, the UPD performs slightly
better than the others. In any case the advantage of a strategy seems purely coincidental.
2. The second important result is that the fluctuations of the random strategy are always smaller than
those of the other strategies (as it is also visible in Fig. 9 for the case Nw = 30): this means that the ran-
dom strategy is less risky than the considered standard trading strategies, while the average performance
is almost identical. This implies that, when attempting to optimize the performance, standard traders
are fooled by the ”illusion of control” phenomenon [11, 12], reinforced by a lucky sequence of wins in a
given time window. However, the first big loss may drive them out of the market. On the other hand, the
effectiveness of random strategies can be probably related to the turbulent and erratic character of the
financial markets: it is true that a random trader is likely to win less in a given time window, but he/she



14

is likely also to loose less. Therefore his/her strategy implies less risk, as he/she has a lower probability
to be thrown out of the game.

5 Conclusions and Policy Implications

In this paper we have explored the role of random strategies in financial systems from a micro-economic
point of view. In particular, we simulated the performance of five trading strategies, including a com-
pletely random one, applied to four very popular financial markets indexes, in order to compare their
predictive capacity. Our main result, which is independent of the market considered, is that standard
trading strategies and their algorithms, based on the past history of the time series, although have occa-
sionally the chance to be successful inside small temporal windows, on a large temporal scale perform on
average not better than the purely random strategy, which, on the other hand, is also much less volatile.
In this respect, for the individual trader, a purely random strategy represents a costless alternative to
expensive professional financial consulting, being at the same time also much less risky, if compared to
the other trading strategies.
This result, obtained at a micro-level, could have many implications for real markets also at the macro-
level, where other important phenomena, like herding, asymmetric information, rational bubbles occur.
In fact, one might expect that a widespread adoption of a random approach for financial transactions
would result in a more stable market with lower volatility. In this connection, random strategies could
play the role of reducing herding behavior over the whole market since, if agents knew that financial
transactions do not necessarily carry an information role, bandwagon effects could probably fade. On
the other hand, as recently suggested by one of us [59], if the policy-maker (Central Banks) intervened
by randomly buying and selling financial assets, two results could be simultaneously obtained. From
an individual point of view, agents would suffer less for asymmetric or insider information, due to the
consciousness of a ”fog of uncertainty” created by the random investments. From a systemic point of
view, again the herding behavior would be consequently reduced and eventual bubbles would burst when
they are still small and are less dangerous; thus, the entire financial system would be less prone to the
speculative behavior of credible ”guru” traders, as explained also in [60]. Of course, this has to be ex-
plored in detail as well as the feedback effect of a global reaction of the market to the application of these
actions.This topic is however beyond the goal of the present paper and it will be investigated in a future
work.
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